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Bond Duration & Convexity on the HP-12C 
Tony Hutchins, #1049 

Example 1: 10 annual coupons. 5% yield. 4% coupon. 10 years to maturity.  
10n 5¼ 4P 0?0 t 7.9615135(duration) ~ 78.29424(convexity). 
Keystrokes       Display        Keystrokes     Display        Keystrokes    Display        
fs                   §             20-   20 -              41-   30 
fCLEARÎ   00-       :M       21-45 15 gF       42-43 36 
:¼         01-45 12  -             22-   30 §              43-   20 
:¼         02-45 12  :n        23-45 11 -              44-   30 
:P       03-45 14  §             24-   20 ?2          45-44  2 
-              04-   30  M            25-   15 :1          46-45  1 
:n         05-45 11  $            26-   13 +              47-   40 
§              06-   20  -             27-   30 Æ            48-   26 
g×         07-43  7  Z            28-   23 :¼        49-45 12 
M             08-   15  Æ            29-   26 b              50-   25 
$             09-   13  2                30-    2 +              51-   40 
Z             10-   23  gÂ        31-43  8 z              52-   10 
?1           11-44  1  M            32-   15 gF       53-43 36 
2                12-    2  $            33-   13 z              54-   10 
:¼         13-45 12  ?z1       34-44 10  1 :1          55-45  1 
b              14-   25  z             35-   10 gF       56-43 36 
+              15-   40  :1          36-45  1 z              57-   10 
§              16-   20  \          37-   36 g(00   58-43,33 00 
gF        17-43 36  +             38-   40 fs        
Æ            18-   26  :0          39-45  0 
2                19-    2  ?-1       40-44 30  1 

12c platinum needs 
6 extra steps 

 
 R0 n ¼ $ P M 
Input f=accrual #coupons yield% n/a coupon% n/a 
Output unchanged unchanged unchanged -price unchanged 100 
¼ and P are per coupon period. 
Register Usage Calculation Lines Calculation Lines 
R0=f R1=Df R2=Cf D and C 1-35  Df=D-f 40 
output X eDf  Cf=C-f·(2·D-f) 36-45 1+i 48-51   
output Y eCf  eCf=(Cf+Df)/(1+i)2 46-56 eDf=Df/(1+i) 55-57 
Df & eDf are in coupon periods. Cf & eCf are in (coupon periods)2. 
The first 35 steps do the tricky work. The rest can almost be done manually. Each 
time is weighted by the present value of the bond cashflow at that time, divided by 
the price. The weights add to 1. D is then just the weighted mean time (first 
moment of time, statistically). If the dirty price is calculated using compound 
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interest and the pricing point is shifted forward by f then D becomes Df=D-f. C is 
the weighted mean time-squared (second moment of time, statistically). The 
financial markets quote the numbers eDf and eCf as shown in the previous table, 
because they are used to determine sensitivity in price with respect to a change in i, 
the effective yield per period. If the continuous yield were used instead then Df 
and Cf would suffice. These solver formulae use the "PV" function only available 
in the 200LX and 19B and 19BII. They show the 3 PVs as calculated by the 12C 
program, in lines 9, 26 and 33. g% is the coupon% stored in PMT. 
{D=PV(n,i%,g%,n*(i%-g%),1,1)/PV(n,i%,g%,100,1,0)/i%*100} 
{C=(PV(n,i%,g%,n*(i%-g%),1,1)*(200/i%+2) 
-PV(n,i%,g%,n*((200+2*i%)-n*(i%-g%)),1,1)) 
/PV(n,i%,g%,100,1,0)/i%*100} 
These closed formulae can also be calculated using summation loops (see the 
formulae later for an, a1 and a2), but on the 12C this takes more code and 
execution time then depends on n, but then the program does work for i=0, where 
D=n(1+g(n+1)/2)/(1+g·n) and C=n2(1+g(n+1)(2n+1)/6/n)/(1+g·n). Here i% less 
than 0.01% is not recommended. Note how we change payment mode within the 
program (lines 7 and 31) - a very useful feature, peculiar to the 12C. The 38C 
requires a little extra code. The program can relatively easily be extended to use a 
face value of other than 100.  
Example 2: Taken from page 77 of the HP-12C Owner's Handbook ("manual"). 29 
semi-annual coupons. 8.25% yield. 6.75% coupon. Accrual=145/182.  
29n 8.25\2z¼ 6.75\2zP 145\182z?0 t 16.6875 
2z 8.342873. ~4z 98.18111. Set 'C' with ?Æ. :0n OP 
M 90.31067 (correct dirty price from the manual).  
 
This one just does D. It uses no storage registers and preserves 2 input stack levels. 
10n 5¼ 4P t 8.3595892(D). Then 1.05 z  7.9615135(eD) 
Keystrokes       Display        Keystrokes     Display        Keystrokes    Display        
fs                   M            07-   15 $             15-   13 
fCLEARÎ   00-       $            08-   13 z              16-   10 
:¼         01-45 12  Æ            09-   26 :¼        17-45 12 
:P       02-45 14  2                10-    2 z              18-   10 
-              03-   30  §             11-   20 g(00   19-43,33 00
:n         04-45 11  gF       12-43 36 fs                
§              05-   20  gÂ        13-43  8 
g×         06-43  7  M            14-   15 

12c platinum needs 
4 extra steps 

 
The following program is useful for finding the accrual given the settlement date 
(SETT), the last and next coupon dates (LCD and NCD). NCD\ SETT\ 
LCDg(65t puts the actual/actual accrual fraction in R0, and g(59 
t does the 30/360 accrual. E.g., for this example: gÕ 6.041982\ 



Page 14 DATAFILE V25 N3 

4.281982\ 12.041981 g(65t 0.70670. Note that R3-R6 are available 
for storing dates, if necessary. 
Keystrokes       Display        Keystrokes     Display        Keystrokes    Display        
gÒ       59-43 26  gÒ      65-43 26 ~           71-   34 
d            60-   33  ~           66-   34 d            72-   33 
~           61-   34  d            67-   33 z              73-   10 
gF        62-43 36  ~           68-   34 ?0          74-44  0 
gÒ       63-43 26  gF       69-43 36 g(00   75-43,33 00
g(72       64-43,33 72 gÒ      70-43 26   
The next program interfaces directly with the built-in bond program to produce the 
duration and convexity of a bond. From page 77 of the manual: 8.25¼ 6.75P 
gÕ 4.281982\ 6.041996 fE then g(76t 16.6875, as 
above. Note how the program first stores 1-n in R0. This is possible because the 
built-in bond programs (i.e. fEorfS ) leave 1-f in n, an undocumented 
feature, till now<G>. They also leave 100+CPN/2 in M which is also used here. 
The PV is the clean price, essential here where we are calculating n. The n is 
calculated using payment mode END and the 12C rounds this up so we 
automatically get the total number of coupons. Quite useful!  
Keystrokes       Display        Keystrokes     Display        Keystrokes    Display        
Æ            76-   26  ¼              83-   12 z              90-   10 
:n         77-45 11  :$       84-45 13 P            91-   14 
-              78-   30  Þ           85-   16 -              92-   30 
?0           79-44  0  $            86-   13 M             93-   15 
:¼         80-45 12  :M       87-45 15 gÂ       94-43  8 
2                81-    2  :P      88-45 14 n              95-   11 
z              82-   10  2                89-    2 g(01   96-43,33 01
After running the above program the original bond can easily be manipulated using 
the built-in TVM itself. For example, if it were a German Moosmüller bond where 
simple interest is used in the odd period, what would its price be? We need to set 
× mode, put a coupon back with FV(:M:P+M), use n-f instead 
of n (:n :0-n) and clear 'C' with ?Æ, then $  -90.29863, 
the new dirty price - with 'C', $  -90.31067, as before. We can now also solve 
for i if we wish. At  this moment in time<G> we seem to have replaced the built-in 
bond programs :-) We can even do an ex-div valuation on this bond - skip the next 
coupon by simply doing gÂ 100M$. The accrued interest is now 
f·PMT-PMT, not the usual f·PMT. In DataFile V22N1P32 I wrote there is no 
accrued interest for the ex-div case. It's negative. Also I see on P31 I have an 
8.343873 which should be 8.342873. Finally, a challenge: Let v=1/(1+i), 
an=v+v2+v3+...+vn=(1-vn)/i, a1=v+2v2+3v3+...+n·vn & a2=v+4v2+9v3+...+n2vn, then 
given PV+PMT·an+FV·vn=0(Âmode), PV+PMT·(1+i)·an+FV·vn=0 (×mode), 
P=g·an+vn, D=(g·a1+n·vn)/P, & C=(g·a2+n2vn)/P, derive the formulae used here :-) 
Hint1: first show that a1=(an·(1+i) - n·vn)/i and a2=(2·(1+i)·a1 - an·(1+i) - n2vn)/i.  
Hint2: v·a1=v2+2v3+3v4+...+n·vn+1, so a1-v·a1=a1·(1-v)=a1·i/(1+i)= v+v2+v3+ ...+vn 
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- n·vn+1 =an- n·vn+1. There is still plenty of manipulation required to get the formula 
for C as used here.  
There is a third way, albeit more approximate,  to get eDf and eCf directly. Before 
going on to that, I should point out that statistically the standard deviation, s, of the 
bond payment times is just the square root of the variance, s2=C-D2. This number is 
independent of "f", it is just a property of the bond payments stream, and the yield, 
but not when it is actually valued. One can even put f=D itself and s is unchanged, 
but Df=0. So, s2=C-D2=Cf-Df2. For a normal bond C>=D2 and s is real. For the 
next method I drop the "f" notation and  derive eD and eC. To get back to the 
statistical D and C: D=eD·(1+i) and C=eC·(1+i)2-D. eD is sometimes called the 
"modified duration" or "volatility". 
 
By Taylor Expansion... 
P(i+∆i)=P(i)+ ∆i·(dP/di) +(∆i)2/2·(d2P/di2 )+(∆i)3/6·(d3P/di3 )+ (∆i)4/24·(d4P/di4 ) + ... 
Let ∆P= P(i+∆i)-P(i), and P=P(i), then 
∆P/P=∆i·(dP/di)/P +(∆i)2/2·(d2P/di2 )/P+(∆i)3/6·(d3P/di3 )/P+ (∆i)4/24·(d4P/di4 )/P + ... 
       =-∆i·eD +(∆i)2/2·eC -(∆i)3/6·B + (∆i)4/24·A + ... 
eD=-(dP/di)/P, and eC=(d2P/di2 )/P, are the same as the eDf and  eCf used earlier. In fact 
the approximate eD as derived below is often called the "effective" duration.  
B=-(d3P/di3 )/P & A=(d4P/di4 )/P, are the Butterfly and the Ant, which have tiny effects 
on ∆P/P . Consider two ∆P/P denoted CH1 and CH2 caused by ∆i=+h and ∆i=-h. Then 
CH1= -eD·h+eC/2· h2 - B/6·h3+A/24·h4 +...,& CH2=eD·h+eC/2· h2 +B/6·h3 + A/24·h4 +... 
CH2-CH1=2·eD·h + B/3·h3  +.., & CH1+CH2= eC· h2  + A/12·h4 +... 
Hence if we ignore A and B and higher terms we can calculate P(i), P(i+h) and P(i-h) and 
then find eD≅(CH2-CH1)/2h & eC≅(CH1+CH2)/h2. The markets use 
h=.01%=.0001=1BP=1 basis point= "an 01". The following little program does the job, 
using h=.01%. It requires P(i) stored in R0, P(i+h) in R1 and P(i-h) in R2. Repeating the 
first example: 

gÂ 10n 5¼ 4P 100M$?0   5.01¼$ ?1  4.99¼$ ?2 
t 7.961514550 ~ 78.29580000, c.f. 78.29424, so some significance has been 
lost, but the results are pretty good! eD is high by .000001 and eC by .002 - on the 12c 
platinum eC is high by only .00004.  
 Keystrokes       Display        Keystrokes     Display        Keystrokes    Display        
fs                   à            07-   24 :1           15-45  1 
fCLEARÎ   00-       ?1           08-44  1 -              16-   30 
:0           01-45  0  :2           09-45  2 5                17-    5 

:2           02-45  2  +              10-   40 0                18-    0 

à            03-   24  Æ            11-   26 §              19-   20 
?2           04-44  2  6                12-    6 g(00   20-43,33 00
d            05-   33  §              13-   20 fs  
:1           06-45  1  :2           14-45  2   
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This also works at i=0!! 0¼$?0  .01¼$?1 .01Þ¼$ ?2 t  
7.75 ~  77.0, both exactly correct! To verify the 77, remember eC=C+D for i=0 and 
here, using the formula given earlier: C=n2(1+g(n+1)(2n+1)/6/n)/(1+g·n) 
=100*(1+.1*11*21/6/10)/(1+.1*10)=69.25. On the 12cp we get the same convexity but 
the duration shows as 7.750001450 - that "145" is a trace of the Butterfly (B above). The 
Ant (A) has got lost in the machine :-) 
 
Bond Interface for Taylor ... 
The following addition to the above gives us a full interface with the built-in bond 
application. At the end, the settlement date is in R3 and the maturity date in R4. Note how 
these dates are preserved in the stack, enabling re-runs for different prices. Instead of 
pressing fE just press g(21 t as shown in this re-run of our bond example:  
8.25¼ 6.75P gÕ 4.281982\6.041996 g(21 t  8.342874930 
~  98.18330000. eD is high by .000002 and eC by .002 (on 12cp by .0001). 
The dollar value of  1BP changes can be recovered as follows: 
DV+01: :0 :1 b  -.075301, DV-01: :0 :2 b  +.075389, and :0 

 90.31067, the correct dirty price, and  :$ 87.62180, the clean price. 
 
Keystrokes       Display        Keystrokes     Display        Keystrokes    Display        
:¼         21-45 12  +              32-   40 ¼              43-   12 
?3           22-44  3  ?1           33-44  1 d            44-   33 

?4           23-44  4  d            34-   33 fE       45-42 21 
Æ            24-   26  :3           35-45  3 +              46-   40 
2                25-    2  ¼              36-   12 ?0           47-44  0 
Þ            26-  16  d            37-   33 d            48-   33 

?-3        27-44 30  3  fE       38-42 21 ?4           49-44  4 
+              28-   40  +              39-   40 d            50-   33 

¼              29-   12  ?2           40-44  2 ?3           51-44  3 
d            30-   33  d            41-   33 g(01     52-43,33 
fE       31-42 21  :4           42-45  4 fs                   
 
The one problem with this is that it takes about 25 seconds to run. eD is pretty accurate 
but eC doesn't fare so well. But it is a surprisingly good practical solution! 
Speed isn't a problem on the 12cp. As noted, the first two programs require modification 
to run on the newer 12cp. Each M$ sequence needs to be Md$$.  
Still room for a further hint on the previous challenge: 
Hint3: v·a2=v2+4v3+9v4+...+n2·vn+1, so a2-v·a2=a2·(1-v)=a2·i/(1+i)= v+3v2+5v3+ 
...+(2n-1)vn - n2·vn+1 = 2a1 - an - n2·vn+1. We are now well on the way. The resulting 
formulae, written using the classic HP TVM notation are really quite simple. For 
example, compare them with the closed formulae you'll find by googling "closed  
duration wikipedia" and "closed  convexity wikipedia":-)  


